Opsoclonus Myoclonus Ataxia
Family Symposium
November 11, 2014
WELCOME!

11 – 1105 am Welcome and Introductions Tim Lotze, M.D.
Dept of Child Neurology

1105 - 1140 am Past, present, and future of OMA Tim Lotze, M.D.

1140 am – 1215 pm Tumors and OMA Jason Shohet, M.D.
Dept of Oncology

1215 - 1250 pm Rehabilitation Needs of OMA Desi Roge, M.D.
Dept of Physical Medicine and Rehabilitation

1250 - 120 pm Lunch - OMS Life and Pablove Mike Michaelis and Naveen Viswanatha

120 - 155 pm Neurocognitive Outcomes Karen Evankovich, Ph.D.
Dept of Psychology

155 - 230 pm Community and School Support Diane Murrell, LCSW
Dept of Social Work

230-3 pm Panel Q and A
Overview

• History of Opsoclonus Myoclonus Ataxia
• The Cerebellum
• OMA and other autoimmune encephalopathies
• Biomarkers in disease
• OMA Etiology
• OMA Natural History
• OMA Current Treatment
• Future Directions
Kinsbourne Syndrome

- 1962: Marcel Kinsbourne
- Other names:
 - Myoclonic Encephalopathy of Infants
 - Dancing Eyes-Dancing Feet syndrome
 - Dancing Eyes syndrome Nystagmus
 - OMA and OMS
The Cerebellum

• “Little brain”

• Functions

 - Motor control: coordination, precision, timing

 - Attention

 - Language

 - Emotional responses
Opsoclonus Myoclonus Ataxia Syndrome

• Opsoclonus = “dancing eyes”

• Myoclonus = muscle jerks

• Ataxia = falling and poor coordination

• Encephalopathy = constant altered behavior

• Commonly misdiagnosed initially as acute cerebellar ataxia
OMA Cause and Effect

• Neuroblastoma (~50% of cases)
 - Theorized that some may have had tumor that spontaneously dissolved

• Infectious trigger (more common in older)
 - Mycoplasma pneumoniae
 - Salmonella enterica
 - Rotavirus
 - Cytomegalovirus
 - Human herpesvirus 6
 - Hepatitis C

• Demyelinating disease (MS; rare)

• No clear cause
Other autoimmune diseases of the central nervous system

• NMDA Receptor antibody encephalitis
• Antibody related dementias and epilepsies
• Hashimoto’s Encephalopathy
• Multiple Sclerosis
• Neuromyelitis Optica
Other neurological paraneoplastic syndromes

• Adults >>> kids
• NMDA Receptor Antibody Encephalitis - teratoma
• Myasthenia gravis – thymoma
• Limbic encephalitis– lung cancer
The Importance of Biomarkers in Disease

- What is the diagnosis?
- What is the cause?
- What is the best treatment?
- Is this a relapse?
- What is the prognosis?

a measurable indicator of some biological state or condition
The Immune System and Autoimmunity

Macrophage T-Cell B-Cell

Activated T-Cell Plasma Cell
Variability in Course of OMS

• Monophasic
 - Complete Remission

• Multiphasic
 - Relapsing – Remitting

Symptoms

Time

Ataxia
Opsoclonus
Encephalopathy

Mild Ataxia
Intermittent Opsoclonus

Residual problems
Neuropsychiatric Manifestations

• Acute Period
 - Irritability
 - Sleeplessness
 - Rage
 - Staring spells

• Chronic Relapsing Period
 - Obsessive Compulsive
 - Oppositional Defiant
 - ADHD
 - Mood Disorders
 - Cognitive Impairment
 - Language Disorders (expressive > receptive)
Behavioral, Language, Cognitive Outcomes

• 105 US cases of OMS

• 52% of patients had relapses

• Residual Behavioral, Language, Cognitive concerns
 - Sleep issues: 46% insomnia, 77% nighttime awakening
 - 58% OCD spectrum, 65% ODD, 79% rage attacks, 47% hyperactive, 29% Depression, 19% ADHD.
 - Language: 50% only ½ of speech was intelligible
 - 41% resource education, 24 % mainstream, 35% combined

Tate ED et al J Pediatr Oncol Nurs. 2005 Jan-Feb;22(1):8-19
Behavioral, Language, Cognitive Outcomes

• Boston Children’s/London Study
 - 54 subjects with Neuropsychological evaluation(s)
 • 29 @ 2 evals
 • 37 with formal IQ eval
 • FSIQ 90 (VIQ 90; PIQ 85)
 - IQ not related to +/- tumor, gender, time to tx
 - IQ related to relapse #, no remission, higher OMA score
 - Some correlation b/w IQ and amount of treatment received
Treatment Options

• Surgical Removal of Tumor
 - Two year monitoring in tumor negative (MRI + MIBG)

• Immunomodulation
 - Cytoxan vs. rituximab
 - Steroids
 • Pred vs. Dexamethasone vs. ACTH
 - IVIG
 - Cellcept and Imuran
Cytoxan

- Chemotherapeutic agent with immunomodulatory effects

<table>
<thead>
<tr>
<th></th>
<th>Complete Response of OMA</th>
<th>No Response</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cytoxan</td>
<td>22 (78%)</td>
<td>6</td>
<td>28</td>
</tr>
<tr>
<td>No Cytoxan</td>
<td>17 (47%)</td>
<td>19</td>
<td>36</td>
</tr>
<tr>
<td>Total</td>
<td>39</td>
<td>25</td>
<td>64</td>
</tr>
</tbody>
</table>
Steroids (Prednisone vs Dexamethasone)

• Many doses used in different treatment regimes
• No head to head comparison trials
• Prednisone daily and tapered slowly
• Dexamethasone given as a monthly pulse
• Both have been able to achieve remissions
• Relapses may occur when tapering
ACTH

• Works by stimulating adrenal gland production of corticosteroids

• Side effects are similar to Prednisone/Dexamethasone

• Can be difficult to administer and expensive
IVIG

• 81% positive response to IVIG + CTX + pred vs. 26% response to CTX + pred alone
 - Response = decrease OMA symptoms/score

• 34% relapse rate across all subjects
 - Relapse = not able to wean steroid or increase OMA symptoms/score

Say What?
Rituximab

• Finding of expanded B cells in CSF prompted trials with Rituxan

• Antibody against B-cells

• Largest trial: 12 pts severe dz.
 - ACTH, IVIG, Rituximab.
 - 17% relapse rate.
 - No long term neurocognitive data yet.
Response to IVIg, ACTH + Ritux

A) Clinical Response

B) Motor Components

- Gait ataxia
- Opsoclonus (at rest)
- Action myoclonus
Adjunctive/Supportive Care

• Neuropsychological evaluation
• Physical/Occupational/Speech Therapy
• Behavioral Support
• Sleep Hygiene
Treatment Recommendations

• Rituximab x 2 doses (redose?)

• IVIg monthly

• Dexamethasone monthly pulse dose

• Consider ACTH and cyclophosphamide
Future Directions

• Establish patient registry
 - Define natural history including long term outcomes
 - Define relapse

• Cause and Effect Studies
 - Genetics
 - Environmental triggers
 - Vitamin D
 - Gut microbiome
 - Biomarker studies

• Clinical trials
 - Current and future therapeutics
 - Cognitive and physical rehabilitation
Thanks!

OMS Life
Autoimmune Reaction

Neuroblastoma

Virus

Antigen

Antigen-Presenting Cell

Activated T Cell

Th

Ts

Cytotoxic T Cell

Brain Injury

Antibodies

B Cell

Activated B Cell

Cytokines

Resting T Cell
Current clinic demographics

- 16 patients
 - F:M = 2.2 : 1
 - Current median age: 5 years
 - 10 with neuroblastoma; 1 with ganglioneuroma
Long Term Outcomes with OMS

• Published reports very similar
 - neurocognitive function
 - Relapsed/residual motor symptoms

• Not related to findings on imaging
 - Rarely signs of cerebellar atrophy
 - No studies published with functional imaging evaluation*

• Some evidence that neurocognitive function worse in those with relapses

Howard K. et al J. Pediatr 2001;139;552-559
Genetics and OMS

• German study: 13 out of 82 OMS parents (15.8%), but only two out of 100 controls (2.0%) had a history of autoimmune disease

• Autoantibodies detected in 12 out of 28 OMS parents (42%) and in 4 out of 50 controls (8%)
 - anti-myelin (5), anti-GAD- (1) and anti-axonal (1) autoantibodies

• May explain why only a subset of NBL pts develop OMS
Pathophysiology behind OMS

• Imaging rarely with changes
 - Cerebellar vermis (Ataxia)
 - Pons (Opsoclonus)

• Handful of autopsies
Pathophysiology behind OMS

• Autoimmune Disease
 - Response to immunomodulatory agents
 - Genetic predisposition
 - Presence of lymphoid infiltrate in tumor

• Leading Hypothesis
 - “Onconeural antigens: antigens shared by brain and tumor
 - Molecular mimicry leads to “friendly fire” attack on the brain
 - No specific universal antibody has been found

Pathophysiology behind OMS

• Evidence of Immune Dysregulation – B cells in CSF
 - CSF B Cells have been found to be increased
 - CSF T helper to Cytotoxic T Lymph ratio is reduced
 - CXCL10 an inflammatory chemokine found to be elevated in the brain, recruiting lymphocytes across the BBB
 - Cytokine BAFF found to be elevated in CSF compared to serum
Pathophysiology behind OMS

• Evidence of Immune Dysregulation – B cells in CSF
 - CSF B Cells have been found to be increased
 - CSF T helper to Cytotoxic T Lymph ratio is reduced
 - CXCL10 an inflammatory chemokine found to be elevated in the brain, recruiting lymphocytes across the BBB
 - Cytokine BAFF found to be elevated in CSF compared to serum

Response to IVIg, ACTH + Ritux

C

CSF B Cell Reduction

% CSF CD19+ B cells

P < 0.0001

-93%

Pre-rituximab
Post-rituximab

D

Clinical-Immunological Relation

% of baseline

Time from initiation of rituximab (months)

Total score
Serum IgM
Blood B cells

% Reduction