Comprehensive Identification of Novel Autoantibody Candidates in OMAS Using Proteome-Wide Screening Platforms

Taisuke Yamauchi, Masatoshi Takagi

Department of Pediatrics and Developmental Biology, Institute of Science Tokyo

SCIENCE TOKYO

The Eleventh International Workshop on Opsoclonus Myoclonus Ataxia Syndrome, 10th - 12th April 2025

Index

- 1. Introduction
- 2. Autoimmunity in OMAS
- 3. Searching for Autoantibodies Our Approach
- 4. Our Research
- 5. Conclusions & Future Directions

Introduction

✓ Rare neuroinflammatory disorder (opsoclonus, myoclonus, ataxia)

✓ Often paraneoplastic (neuroblastoma) in children → immune-mediated

 \checkmark Pathogenesis unclear \rightarrow no reliable biomarkers or specific treatments

Why OMAS Matters

- Severe neuroinflammatory disorder(opsoclonus, myoclonus, ataxia)
- ✓ Paraneoplastic (often with NB)
- ✓ Steroid/IVIG effective → Immune-mediated nature
- ✓ No reliable biomarkers → Early Dx difficult
- ✓ Immune insight may inform broader neuroinflammation

Autoimmunity in OMAS

Autoimmunity in OMAS: What We Know - and What's Missing

Key Message:

Evidence of autoimmunity is strong, but conventional antibody markers are inconsistent, nonspecific, and technically elusive. ► A comprehensive, proteome-wide screening is needed to uncover novel candidates.

Searching for Autoantibodies - Our Approach

> Comprehensive autoantibody & proteome-wide analysis of CSF from NB-associated OMAS

> Identify shared autoantibodies & consistently altered proteins

Correlate findings with clinical data

 \rightarrow clarify OMAS pathophysiology & guide future therapies

Materials

- **14 CSF** samples from OMAS-NB pediatric patients
 - Retrospective cohort (JNBSG/JCCG)
- **Control samples from ALL (non-CNS disease)**

Methods

Screening Antibodies

- Protein Microarray
- Phage ImmunoPrecipitation Sequencing ; PhIP-seq
- Liquid Chromatography–Tandem Mass Spectrometry ; LC–MS/MS

Validation

- Candidate selection across platforms
- **Confirmatory assays:** ELISA, Western blot, immunocytochemistry
- **Clinical correlation:** neuroblastoma status, immunotherapy response
 - \triangle Note: Validation methods may not fully capture novel or low-abundance antibodies
 - \rightarrow Functional validation ongoing

Protein Microarray

1. Proteins or peptides densely arrayed on a solid surface

2. Antibodies in the sample bind to their respective targets

3. Fluorescence reveal antibody-antigen interaction

Detectable Protein:

Standard type 14,746 & Variant/Fusion Proteins 1,937

Key Message: High-throughput sc

High-throughput screening of full-length proteins enables detection of diverse antibody targets, including membrane and intracellular antigens.

Phage ImmunoPrecipitation Sequencing (PhIP-Seq)

- 1. Peptide phage display library
- 2. Incubation with CSF/serum
- 3. Immunoprecipitation of bound phages
- 4. NGS-based identification of epitopes

Key Message: PhIP-seq detects linear epitope reactivity, capturing lowabundance or unconventional antibody targets.¹³

LC-MS/MS DIA (data-independent acquisition)

- 1. LC separates peptides by chemical properties
- 2. MS/MS fragments and analyzes ions
- 3. DIA enables reproducible, comprehensive profiling
- \rightarrow High-sensitivity detection of CSF proteins

Key Message:

Unbiased proteomic profiling reveals differentially expressed proteins, providing context beyond antibody binding.¹⁴

Parallel screening and cross-platform analysis to identify robust autoantibody candidates.

Our Research

Results - Protein Microarray

PCA Plot of Samples

Hierarchical Clustering of Samples

Heatmap: OMS vs ALL (Up-regulated on Top, Down-regulated on Bottom)

Differential Expressed Autoantibody Targets

Candidate antigens preferentially recognized in OMAS

Up 4 ٠ • ITPRIP1 ε -log10 P.Value • [CDR2L] Down \sim [MED4] [ATCAY] . CHMP2A1 . 1 0 -2.0 -1.5 -1.0 -0.5 0.5 1.0 0.0

log2 Fold Change

Key Message:

CDR2L, BEX1, TMEM240 identified as OMAS-enriched autoantigens. Linked to cerebellar and neurodevelopmental function.

ATCAY

CDR2L

ITPRIP

MED4

CHMP2A

BEX1

Volcano Plot (P.Value < 0.05, |logFC| > log2(1.8))

Results - PhiP-seq

Expressed in the nervous system and observed in the majority of OMAS cases.

Results - LC-MS/MS

Peptides with differential expression identified by LC-MS/MS

Protein-coding genes found to be upregulated in OMAS

Genes	Genes	
COL3A1	CDH6	
PEBP1	CDH8	
PKM	CPVL	
COL6A3	NUTF2	
GDA	MIF	
COL5A1	CYCS	
FOLR2	TXNDC17	
C1QC	WFIKKN2	
LYZ	PFN2	
BASP1	C1QB	
GDI1	IGFBPL1	
THBS1	CHRDL1	
	CBL N1	

The colored genes are those involved in neural function, with CBLN1 being particularly associated with the cerebellum.

Results Summary

Autoantibody Candidates

Gene Symbol	Gene Name	Function	Modalities
ATCAY	Ataxia, Cerebellar, Cayman Type	Involved in neuronal development; mutations linked to cerebellar ataxia.	Protein Microarray
CDR2L	Cerebellar Degeneration- Related Protein 2-Like	Related to neuronal function; potential autoantigen in paraneoplastic syndromes.	Protein Microarray
BEX1	Brain Expressed X-Linked 1	Regulates neurodevelopment and apoptosis; involved in cancer biology.	Protein Microarray
ITPRIP	Inositol 1,4,5-Trisphosphate Receptor Interacting Protein	Modulates IP3 receptor activity and intracellular calcium signaling.	Protein Microarray
TMEM240	Transmembrane Protein 240	Poorly characterized; mutations associated with spinocerebellar ataxia type 21.	Protein Microarray
DTD2	D-Tyr-tRNA Deacylase 2	Hydrolyzes mischarged D-tyrosyl-tRNA; maintains translational fidelity.	PhIP-seq
STXBP3	Syntaxin Binding Protein 3	Involved in vesicle trafficking and synaptic transmission.	PhIP-seq
NCAM1	Neural Cell Adhesion Molecule 1	Mediates cell-cell adhesion; essential for neural development and plasticity.	PhIP-seq
CBLN1	Cerebellin 1 Precursor	Functions in synapse formation and maintenance in the cerebellum.	LC-MS/MS

Conclusions & Future Directions

Overview and Key Finding

- 9 candidate autoantigens enriched in OMAS CSF
 - Cerebellar function: CDR2L, CBLN1, TMEM240, ATCAY
 - > Neurodevelopment & synaptic plasticity: BEX1, NCAM1

Suggests autoimmune targeting may drive ataxia & neuropsychiatric features

- CDR2L: structurally/functionally similar to known PCD antigen CDR2
- CBLN1: essential for cerebellar synapse formation
- > TMEM240, ATCAY: linked to cerebellar ataxias

Findings align with OMAS cerebellar symptoms

Suggest shared immune mechanisms with cerebellar ataxias

- > BEX1 & NCAM1: key roles in neuronal differentiation, survival, and synaptic connectivity
- ➤ Autoantibodies may disrupt development/plasticity → neuropsychiatric features

Suggests broader immune impact beyond motor control

Potential link to attention deficits, behavioral dysregulation in pediatric OMAS

Novel or Understudied Genes with Functional Implications

- DTD2: Protein quality control (removes mischarged tRNAs)
 - \rightarrow potential link to neurotoxicity
- ITPRIP: Modulates IP3 receptor-mediated calcium signaling
 - \rightarrow ties to neuronal excitability & immune pathways

Offer new mechanistic clues in OMAS despite limited neuroimmunology data

Limitations

- Functional validation is ongoing
- Conventional assays may miss rare or low-affinity antibodies
- Pathogenic role and timing of antibodies still unclear

Strengths

- Multi-platform screening provides cross-validation
- Identified candidates show functional and clinical relevance

Next Steps

Toward mechanistic studies and biomarker development

Take Home Message

✓ OMAS lacks consistent and specific antibody markers

✓ We identified 9 novel candidate antigens via proteome-wide screening

✓ Several are linked to cerebellar or synaptic function

✓ Highlights the need for improved validation and deeper functional insight

✓ Toward better biomarkers and understanding of OMAS pathogenesis