Eye tracking in opsoclonus Myoclonus Ataxia Syndrome

E. Ann Yeh, MD, FRCP(C) Director, Pediatric Neuroinflammatory Disorders Program Hospital for Sick Children Professor, University of Toronto Garry Hurvitz Chair in Neurology Senior Scientist, SickKids RI

Garry Hurvitz

Centre for Brain & Mental Health

SickKids

Neurosciences & Mental Health

Disclosures

• EAY has received funds from CDA, NIH, SCN, NMSS, CIHI, CIHR, OIRM, MS Society of Canada, SickKids Foundation, CBMH Innovation Fund, CMSC, OMSLife Rare Diseases Foundation and Guthy-Jackson Foundation. Investigator initiated research funds: Biogen. Scientific advisory: Hoffman-LaRoche, Biogen. Garry Hurvitz Chair in Neurology.

Eye movements and outcomes in OMAS

• Altered circuit dynamics in the brainstem reticular formation are known to associate with OMAS

Brain Volumes in Opsoclonus-Myoclonus Ataxia Syndrome: A Longitudinal Study

Montaha Almudhry, MD¹, Matthias W. Wagner, MD^{2,3}, Giulia Longoni, MD^{1,4}, Carmen Yea, MSc¹, Logi Vidarsson, PhD², Birgit Ertl-Wagner, MD^{1,2,5}, and E. Ann Yeh, MD^{1,4} Journal of Child Neurology 2024, Vol. 39(3-4) 129-134 © The Author(s) 2024

Article reuse guidelines: sagepub.com/journals-permissions DOI: 10.1177/08830738241240181 journals.sagepub.com/home/jcn

Long term: Cognition

89

<u>Tested 5 Cognitive Domains:</u>

1.	Set-Shifting	
2.	Inhibitory Control	omas performed
3.	Working Memory	significantly worse than me
4.	Episodic Memory	•

5. Language

Dimensional Change Card Sort (DCCS) Task (SET SHIFTING)

	OMAS (n=8)	HC (n=12)	t df p
Median corrected score	76.5	108.5	-3.301 18.000 0.004

Flanker Task (INHIBITORY CONTROL)

Cognitive abnormalities in OMAS: inhibitory control

Do ongoing alterations in circuit dynamics exist? How do these abnormalities, if present, associate with functional outcomes in this population? Is there an accessible way to ask these questions?

Eye Tracking

Eye movements + fixations are *functional outcomes* \rightarrow cognitive processes⁶ Frontal Eye Field dIPFC Caudate Nucleus Substantia Nigra Pars Reticulata Reticulata Reticulata

Supplementary Eye Field

Good understanding of neural circuitry that regulates eye movements⁷

Saccadic eye movements:

rapid eye movements that **shift the focus of attention** from one part of the visual field to another⁸

SickKids | Centre for Brain & Mental Health

Saccade Control Circuit

Figure adapted from Doug Munoz

LOOK AWAY: THE ANTI-SACCADE TASK AND THE VOLUNTARY CONTROL OF EYE MOVEMENT

Douglas P. Munoz* and Stefan Everling^{‡§}

Eye Tracking can be used to evaluate executive function

What is eye tracking? **STRUCTURED**⁹ **UNSTRUCTURED**¹⁰ free viewing pro-saccade anti-saccade target fix fix target **Data Analyses** → SACCADE

Adapted from Doug Munoz

9 Tao, L., Wang, Q., Liu, D., Wang, J., Zhu, Z., & Feng, L. (2020). Eye tracking metrics to screen and assess cognitive inpairment in patients with neurological disorders. Neurological Sciences, 41(7), 1697–1704. https://doi.org/10.1007/s10072-020-04210-y 10 Habili, M., Oertel, W. H., White, B. J., Brien, D. C., Coe, B. C., Riek, H. C., Perkins, J., Yep, R., Itti, L., Timmermann, L., Best, C., Sittig, E., Janzen, A., & Munoz, D. P. (2022). Eye tracking identifies biomarkers in α-synucleinopathies versus progressive supranuclear palsy. Journal of Neurology, 269(9), 4920–4938. https://doi.org/10.1007/s00.415-022-11166-5

Adapted from Doug Munoz

9 Tao, L., Wang, Q., Liu, D., Wang, J., Zhu, Z., & Feng, L. (2020). Eye tracking metrics to screen and assess cognitive impairment in patients with neurological disorders. Neurological Sciences, 41(7), 1697–1704. https://doi.org/10.1007/s10072-020-04310-y 10 Habili, M., Oertel, W. H., White, B. J., Brien, D. C., Coe, B. C., Riek, H. C., Perkins, J., Yep, R., Itti, L., Timmermann, L., Best, C., Sittig, E., Janzen, A., & Munoz, D. P. (2022). Eye tracking identifies biomarkers in α-synucleinopathies vesus progressive supranuclear palsy. Journal of Neurology, 269(9), 4920–4938. https://doi.org/10.1007/s00.415-022-1136-5

UNSTRUCTURED

free viewing

Why Free Viewing (FV)?

- 1. Easy to administer optimal for young children⁹
- 2. Rich assessment of saccade behaviour in a dynamic visual setting¹⁰
- 3. FV reveals saccadic parameters¹⁰

Adapted from Doug Munoz

Free-viewing eye tracking (EyeLink 1000 Plus)

EyeLink 1000 Plus

• Video-based monocular eye tracker – recorded eye position, pupil size, and blink rate at 500Hz

17-inch
LCD monitor

Task 1: Free-viewing eye tracking (EyeLink 1000 Plus)

Clip Change = large visual perturbation¹²

Are there ongoing abnormalities

Eye tracking localizes abnormalities to the superior colliculus

RESEARCH ARTICLE

Saccade and pupil changes in children recovering from opsoclonus-myoclonus ataxia syndrome reveal midbrain alterations in oculomotor circuits

Douglas P. Munoz^{1,*} ^(b), Brian J. White¹, Donald C. Brien¹, Kajaal Parbhoo², Carmen Yea² & E. Ann Yeh²

¹Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada ²Division of Neurology, The Hospital for Sick Children, Toronto, Ontario, Canada

Table 1. Patient characteristics.

Number of patients	13 children (10 female, 3 male)
Median age of OMAS at	5.3 years (IQR: 2.3–5.9)
eye-tracking	
Median age at onset of OMAS	1.8 years (IQR: 1.5–2.4)
Median OMAS score at onset	8 (IQR: 5–10)
Median time from onset to first MRI	6 days (IQR: 5–17)
Structural MRI abnormalities at onset ^a	1
Median time from first MRI to first steroids	5 days (IQR: 2–13)
Median time from onset to eye tracking	2.3 years (IQR: 1.0–5.2)
Median OMAS score at eye tracking	1 (IQR: 1–2.2)
Median opsoclonus score at eye tracking	0 (no patients with ongoing opsoclonus)
Median time from onset to follow-up MRI	2.8 years (IQR: 1.4–3.9; range: 1.1–13.3)
Number of CTRL	13 children (10 female, 3 male)
Median CTRL age at eye tracking	5.0 years (IQR: 3.3–6.9)
-	

. . ..

More short duration fixations, fewer longer fixation durations

٦S

S,

Fi

Rebound of saccades DELAYED in OMAS which persisted ->delay in harvesting new information

Time from clip change (ms)

Reduced pupil dilatation latency, greater pupil dilatation speed

Bottom line

- More short duration fixations
- Delayed rebound in macro-saccade rate following clip change
- Reduced pupil dilatation latency, greater pupil dilatation speed

Ongoing oculomotor abnormalities persist even after clinical recovery

Can eye tracking provide a window to cognition in OMAS?

Detecting OMAS: associations of eye tracking metrics with cognitive outcomes

Susana Wu^{a,b}, Brian J. White^c, Donald C. Brien^c, Brian C. Coe^c, Agnes M.F. Wong^{a,b}, Douglas O. Cheyne^{a,b}, Carmen Yea^b, Douglas P. Munoz^c, E. Ann Yeh^{a,b}

^aUniversity of Toronto, Toronto ON M5S 1A1, ^bThe Hospital for Sick Children, Toronto ON M5G 1X8, ^cQueen's University, Kingston ON K7L 3N6

Demographics

	HC Participants (N=15)	OMAS Participants (N=11)	p-value
Female, n (%)	12 (80%)	9 (82%)	0.912
Age (months), mean (SD)	114.467 (56.342)	102.000 (50.976)	0.562
Race, n (%)			
White	6 (40%)	4 (36%)	0.858
Non-White	9 (60%)	7 (64%)	
Time from Symptom			
Onset to Data Collection		6.2(4.3)	
(years), mean (SD)			

	HC (n=14)	OMAS (n=9)	p-value	effect size
Mean Saccade Rate (saccades/sec)	1.260	0.900	0.033	1.026

Boxplot of MSR

Mean Fixation Duration is higher in OMAS than HC

<u>Lower</u> MSR is correlated with <u>lower</u> scores on the Dimensional Change Card Sort Task (DCCS)

MSR vs DCCS

<u>Longer</u> MFD is correlated with <u>lower</u> scores on the Dimensional Change Card Sort Task (DCCS)

MFD vs DCCS

<u>Lower</u> MSR is correlated with <u>lower</u> scores on the List Sorting Working Memory (LSWM) Test

<u>Longer</u> MFD is correlated with <u>lower</u> scores on the List Sorting Working Memory (LSWM) Test

MFD vs LSWM

MSR vs LSWM

• Small cohort size!

Larger, Multi-Site Pilot underway

OmeLife

Centre for Brain & Mental Health

SickKids

Conclusions

- Eye tracking abnormalities are present even after recovery in children with OMAS
- Brain structure and cognitive function abnormalities are also seen
- Eye tracking is a window to cognitive function
- Preliminary data suggests the presence of correlations between eye tracking abnormalities and specific cognitive outcomes
- Multi-site studies are underway

Acknowlec

- SickKids/Yeh team
 - Tara Feltham
 - Brenna Wong
 - Shamastika Thilagaratna
 - Paul Yoo
 - Samantha Stephens
 - Sonika Kumari
 - Joley Johnstone
 - Nusaybah Khan
 - Daniela Castillo Vilagren
 - Areej Mahjoub
 - Rabporn Suntornlohanakul
 - Amal Warsame
 - Carmen Yea
 - Rachel Kang
 - Sajith Rajapaksa
 - Vicky Chen
 - Curtis Hay
 - Lama Almojah
 - Ines El Najar
 - Su -

OmsLife 🎉

SickKids

Neurosciences &

Mental Health

SickKids

Garry Hurvitz Centre for Brain

& Mental Health

Brenda Banwell Samantha Fernandez

National Multiple Sclerosis Society